Serveur d'exploration sur la pourriture ligneuse

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Role of calcium in maintaining the heme environment of manganese peroxidase.

Identifieur interne : 001C48 ( Main/Exploration ); précédent : 001C47; suivant : 001C49

Role of calcium in maintaining the heme environment of manganese peroxidase.

Auteurs : G R Sutherland [États-Unis] ; L S Zapanta ; M. Tien ; S D Aust

Source :

RBID : pubmed:9132018

Descripteurs français

English descriptors

Abstract

We previously demonstrated that manganese peroxidase from the white-rot fungus Phanerochaete chrysosporium was very susceptible to thermal inactivation due to the loss of calcium from the enzyme [Sutherland & Aust (1996) Arch. Biochem. Biophys. 332, 128-134]. The structural changes that occur during thermal inactivation and the release of calcium from manganese peroxidase have now been characterized. Thermal inactivation caused distinct alterations in the heme environment and slight changes in the overall protein structure, both of which were reversed upon reactivation of the enzyme with calcium. The absorption spectrum of inactivated manganese peroxidase was similar to that of low-spin ferric heme proteins, indicating that a sixth ligand had bound to the distal side of the heme iron. Consistent with disruption of the distal heme environment, thermally inactivated manganese peroxidase did not react with hydrogen peroxide to form compound I. The inactive enzyme exhibited a pH-dependent absorption transition with a pKa of 5.7. Studies involving imidazole indicated that the sixth ligand may be a distal histidine. Low-temperature electron paramagnetic resonance spectroscopy confirmed that the heme iron of the inactivated form of manganese peroxidase was predominantly in a low-spin state. The near-ultraviolet/visible circular dichroism spectrum also supported the proposed formation of a highly symmetric bis(imidazole) heme complex upon thermal inactivation of the enzyme. A recombinant manganese peroxidase, in which the distal calcium binding site was altered such that calcium binding would be minimized, was also characterized. This enzyme, D47A, had the same catalytic and spectroscopic properties and calcium content as thermally inactivated manganese peroxidase. Therefore, the inactivation and structural changes that occurred during thermal incubation of manganese peroxidase could be explained by the loss of the distal calcium.

DOI: 10.1021/bi962195m
PubMed: 9132018


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Role of calcium in maintaining the heme environment of manganese peroxidase.</title>
<author>
<name sortKey="Sutherland, G R" sort="Sutherland, G R" uniqKey="Sutherland G" first="G R" last="Sutherland">G R Sutherland</name>
<affiliation wicri:level="1">
<nlm:affiliation>Biotechnology Center, Utah State University, Logan 84322-4705, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Biotechnology Center, Utah State University, Logan 84322-4705</wicri:regionArea>
<wicri:noRegion>Logan 84322-4705</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Zapanta, L S" sort="Zapanta, L S" uniqKey="Zapanta L" first="L S" last="Zapanta">L S Zapanta</name>
</author>
<author>
<name sortKey="Tien, M" sort="Tien, M" uniqKey="Tien M" first="M" last="Tien">M. Tien</name>
</author>
<author>
<name sortKey="Aust, S D" sort="Aust, S D" uniqKey="Aust S" first="S D" last="Aust">S D Aust</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="1997">1997</date>
<idno type="RBID">pubmed:9132018</idno>
<idno type="pmid">9132018</idno>
<idno type="doi">10.1021/bi962195m</idno>
<idno type="wicri:Area/Main/Corpus">001C69</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001C69</idno>
<idno type="wicri:Area/Main/Curation">001C69</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001C69</idno>
<idno type="wicri:Area/Main/Exploration">001C69</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Role of calcium in maintaining the heme environment of manganese peroxidase.</title>
<author>
<name sortKey="Sutherland, G R" sort="Sutherland, G R" uniqKey="Sutherland G" first="G R" last="Sutherland">G R Sutherland</name>
<affiliation wicri:level="1">
<nlm:affiliation>Biotechnology Center, Utah State University, Logan 84322-4705, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Biotechnology Center, Utah State University, Logan 84322-4705</wicri:regionArea>
<wicri:noRegion>Logan 84322-4705</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Zapanta, L S" sort="Zapanta, L S" uniqKey="Zapanta L" first="L S" last="Zapanta">L S Zapanta</name>
</author>
<author>
<name sortKey="Tien, M" sort="Tien, M" uniqKey="Tien M" first="M" last="Tien">M. Tien</name>
</author>
<author>
<name sortKey="Aust, S D" sort="Aust, S D" uniqKey="Aust S" first="S D" last="Aust">S D Aust</name>
</author>
</analytic>
<series>
<title level="j">Biochemistry</title>
<idno type="ISSN">0006-2960</idno>
<imprint>
<date when="1997" type="published">1997</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Basidiomycota (MeSH)</term>
<term>Calcium (MeSH)</term>
<term>Cyanides (MeSH)</term>
<term>Electron Spin Resonance Spectroscopy (MeSH)</term>
<term>Heme (MeSH)</term>
<term>Hot Temperature (MeSH)</term>
<term>Hydrogen-Ion Concentration (MeSH)</term>
<term>Peroxidases (metabolism)</term>
<term>Protein Conformation (MeSH)</term>
<term>Spectrophotometry, Atomic (MeSH)</term>
<term>Structure-Activity Relationship (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Basidiomycota (MeSH)</term>
<term>Calcium (MeSH)</term>
<term>Concentration en ions d'hydrogène (MeSH)</term>
<term>Conformation des protéines (MeSH)</term>
<term>Cyanures (MeSH)</term>
<term>Hème (MeSH)</term>
<term>Peroxidases (métabolisme)</term>
<term>Relation structure-activité (MeSH)</term>
<term>Spectrophotométrie atomique (MeSH)</term>
<term>Spectroscopie de résonance de spin électronique (MeSH)</term>
<term>Température élevée (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Peroxidases</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>Calcium</term>
<term>Cyanides</term>
<term>Heme</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Peroxidases</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Basidiomycota</term>
<term>Electron Spin Resonance Spectroscopy</term>
<term>Hot Temperature</term>
<term>Hydrogen-Ion Concentration</term>
<term>Protein Conformation</term>
<term>Spectrophotometry, Atomic</term>
<term>Structure-Activity Relationship</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Basidiomycota</term>
<term>Calcium</term>
<term>Concentration en ions d'hydrogène</term>
<term>Conformation des protéines</term>
<term>Cyanures</term>
<term>Hème</term>
<term>Relation structure-activité</term>
<term>Spectrophotométrie atomique</term>
<term>Spectroscopie de résonance de spin électronique</term>
<term>Température élevée</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">We previously demonstrated that manganese peroxidase from the white-rot fungus Phanerochaete chrysosporium was very susceptible to thermal inactivation due to the loss of calcium from the enzyme [Sutherland & Aust (1996) Arch. Biochem. Biophys. 332, 128-134]. The structural changes that occur during thermal inactivation and the release of calcium from manganese peroxidase have now been characterized. Thermal inactivation caused distinct alterations in the heme environment and slight changes in the overall protein structure, both of which were reversed upon reactivation of the enzyme with calcium. The absorption spectrum of inactivated manganese peroxidase was similar to that of low-spin ferric heme proteins, indicating that a sixth ligand had bound to the distal side of the heme iron. Consistent with disruption of the distal heme environment, thermally inactivated manganese peroxidase did not react with hydrogen peroxide to form compound I. The inactive enzyme exhibited a pH-dependent absorption transition with a pKa of 5.7. Studies involving imidazole indicated that the sixth ligand may be a distal histidine. Low-temperature electron paramagnetic resonance spectroscopy confirmed that the heme iron of the inactivated form of manganese peroxidase was predominantly in a low-spin state. The near-ultraviolet/visible circular dichroism spectrum also supported the proposed formation of a highly symmetric bis(imidazole) heme complex upon thermal inactivation of the enzyme. A recombinant manganese peroxidase, in which the distal calcium binding site was altered such that calcium binding would be minimized, was also characterized. This enzyme, D47A, had the same catalytic and spectroscopic properties and calcium content as thermally inactivated manganese peroxidase. Therefore, the inactivation and structural changes that occurred during thermal incubation of manganese peroxidase could be explained by the loss of the distal calcium.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">9132018</PMID>
<DateCompleted>
<Year>1997</Year>
<Month>04</Month>
<Day>29</Day>
</DateCompleted>
<DateRevised>
<Year>2013</Year>
<Month>11</Month>
<Day>21</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0006-2960</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>36</Volume>
<Issue>12</Issue>
<PubDate>
<Year>1997</Year>
<Month>Mar</Month>
<Day>25</Day>
</PubDate>
</JournalIssue>
<Title>Biochemistry</Title>
<ISOAbbreviation>Biochemistry</ISOAbbreviation>
</Journal>
<ArticleTitle>Role of calcium in maintaining the heme environment of manganese peroxidase.</ArticleTitle>
<Pagination>
<MedlinePgn>3654-62</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>We previously demonstrated that manganese peroxidase from the white-rot fungus Phanerochaete chrysosporium was very susceptible to thermal inactivation due to the loss of calcium from the enzyme [Sutherland & Aust (1996) Arch. Biochem. Biophys. 332, 128-134]. The structural changes that occur during thermal inactivation and the release of calcium from manganese peroxidase have now been characterized. Thermal inactivation caused distinct alterations in the heme environment and slight changes in the overall protein structure, both of which were reversed upon reactivation of the enzyme with calcium. The absorption spectrum of inactivated manganese peroxidase was similar to that of low-spin ferric heme proteins, indicating that a sixth ligand had bound to the distal side of the heme iron. Consistent with disruption of the distal heme environment, thermally inactivated manganese peroxidase did not react with hydrogen peroxide to form compound I. The inactive enzyme exhibited a pH-dependent absorption transition with a pKa of 5.7. Studies involving imidazole indicated that the sixth ligand may be a distal histidine. Low-temperature electron paramagnetic resonance spectroscopy confirmed that the heme iron of the inactivated form of manganese peroxidase was predominantly in a low-spin state. The near-ultraviolet/visible circular dichroism spectrum also supported the proposed formation of a highly symmetric bis(imidazole) heme complex upon thermal inactivation of the enzyme. A recombinant manganese peroxidase, in which the distal calcium binding site was altered such that calcium binding would be minimized, was also characterized. This enzyme, D47A, had the same catalytic and spectroscopic properties and calcium content as thermally inactivated manganese peroxidase. Therefore, the inactivation and structural changes that occurred during thermal incubation of manganese peroxidase could be explained by the loss of the distal calcium.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Sutherland</LastName>
<ForeName>G R</ForeName>
<Initials>GR</Initials>
<AffiliationInfo>
<Affiliation>Biotechnology Center, Utah State University, Logan 84322-4705, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zapanta</LastName>
<ForeName>L S</ForeName>
<Initials>LS</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Tien</LastName>
<ForeName>M</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Aust</LastName>
<ForeName>S D</ForeName>
<Initials>SD</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>ES04922</GrantID>
<Acronym>ES</Acronym>
<Agency>NIEHS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
<PublicationType UI="D013487">Research Support, U.S. Gov't, P.H.S.</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Biochemistry</MedlineTA>
<NlmUniqueID>0370623</NlmUniqueID>
<ISSNLinking>0006-2960</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D003486">Cyanides</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>42VZT0U6YR</RegistryNumber>
<NameOfSubstance UI="D006418">Heme</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.11.1.-</RegistryNumber>
<NameOfSubstance UI="D010544">Peroxidases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.11.1.13</RegistryNumber>
<NameOfSubstance UI="C051129">manganese peroxidase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>SY7Q814VUP</RegistryNumber>
<NameOfSubstance UI="D002118">Calcium</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001487" MajorTopicYN="N">Basidiomycota</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002118" MajorTopicYN="Y">Calcium</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003486" MajorTopicYN="N">Cyanides</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004578" MajorTopicYN="N">Electron Spin Resonance Spectroscopy</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006418" MajorTopicYN="Y">Heme</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006358" MajorTopicYN="N">Hot Temperature</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006863" MajorTopicYN="N">Hydrogen-Ion Concentration</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010544" MajorTopicYN="N">Peroxidases</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011487" MajorTopicYN="N">Protein Conformation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013054" MajorTopicYN="N">Spectrophotometry, Atomic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013329" MajorTopicYN="N">Structure-Activity Relationship</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>1997</Year>
<Month>3</Month>
<Day>25</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>1997</Year>
<Month>3</Month>
<Day>25</Day>
<Hour>0</Hour>
<Minute>1</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>1997</Year>
<Month>3</Month>
<Day>25</Day>
<Hour>0</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">9132018</ArticleId>
<ArticleId IdType="doi">10.1021/bi962195m</ArticleId>
<ArticleId IdType="pii">bi962195m</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Aust, S D" sort="Aust, S D" uniqKey="Aust S" first="S D" last="Aust">S D Aust</name>
<name sortKey="Tien, M" sort="Tien, M" uniqKey="Tien M" first="M" last="Tien">M. Tien</name>
<name sortKey="Zapanta, L S" sort="Zapanta, L S" uniqKey="Zapanta L" first="L S" last="Zapanta">L S Zapanta</name>
</noCountry>
<country name="États-Unis">
<noRegion>
<name sortKey="Sutherland, G R" sort="Sutherland, G R" uniqKey="Sutherland G" first="G R" last="Sutherland">G R Sutherland</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/WhiteRotV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001C48 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001C48 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    WhiteRotV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:9132018
   |texte=   Role of calcium in maintaining the heme environment of manganese peroxidase.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:9132018" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a WhiteRotV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Tue Nov 17 14:47:15 2020. Site generation: Tue Nov 17 14:50:18 2020